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Abstract. We review the results of our experimental investigation of heat
conduction in suspended graphene and offer a theoretical interpretation of
its extremely high thermal conductivity. The direct measurements of thermal
conductivity of graphene were performed using a non-contact optical technique
and special calibration procedure with bulk graphite. The measured values were
in the range of ~3000-5300 W mK ! near room temperature and depended on
the lateral dimensions of graphene flakes. We explain the enhanced thermal
conductivity of graphene as compared to that of bulk graphite basal planes
by the two-dimensional nature of heat conduction in graphene over the whole
range of phonon frequencies. Our calculations show that the intrinsic Umklapp-
limited thermal conductivity of graphene grows with the increasing dimensions
of graphene flakes and can exceed that of bulk graphite when the flake size
is on the order of a few micrometers. The detailed theory, which includes the
phonon-mode-dependent Gruneisen parameter and takes into account phonon
scattering on graphene edges and point defects, gives numerical results that are
in excellent agreement with the measurements for suspended graphene. Superior
thermal properties of graphene are beneficial for all proposed graphene device
applications.

!'On leave from the Department of Theoretical Physics, Moldova State University, Chisinau, Republic of Moldova.
2 Author to whom any correspondence should be addressed.

New Journal of Physics 11 (2009) 000000
1367-2630/09/000000+18$30.00 © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft


mailto:balandin@ee.ucr.edu
http://www.njp.org/

2 I0P Institute of Physics () DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

Contents

1. Introduction 2
2. Experimental investigation of heat conduction in graphene 3
3. Details of the measurements and data extraction technique 5
4. Formal theory of the phonon heat conduction in graphene 9
S. Simple model of the phonon thermal conductivity of graphene 13
6. Conclusions 17
Acknowledgments 17
References 17

1. Introduction

It was recently discovered experimentally that graphene [1, 2] has an extremely high thermal
conductivity [3, 4]. The measurements reported by Balandin er al [3, 4] were performed
using the non-contact optical technique, where the local temperature rise due to laser heating
was determined through the independently measured temperature coefficients of the graphene
Raman G peak [5, 6]. It was found that the near room-temperature (RT) thermal conductivity of
partially suspended single-layer graphene is in the range K ~ 3000-5300 W mK ™' depending
on the graphene flake size. These experimental findings stimulated a body of theoretical work
on the subject. Nika et al [7] performed a detailed numerical study of the lattice thermal
conductivity of graphene using the phonon dispersion obtained by the valence-force field
(VFF) method. The authors treated the three-phonon Umklapp scattering directly considering
all phonon relaxation channels allowed by the energy and momentum conservation in the
graphene two-dimensional (2D) Brillouin zone (BZ) [7]. Jiang et al [8] calculated the thermal
conductance of graphene in the pure ballistic limit obtaining a high value, which translates
to the thermal conductivity in excess of ~6600 W mK~'. The higher thermal conductivity is
expected for the ballistic regime when no scattering is included. Lan et al [9] determined the
thermal conductivity of graphene nanoribbons by combining the tight-binding approach and the
phonon non-equilibrium Green’s function method. The authors found a thermal conductivity
K =3410 W mK™! [9], which is clearly above the bulk graphite limit of 2000 W mK ™" and in
agreement with the first experiments [3, 4]. Strong edge and flake size effects were also revealed
by the numerical data in line with the experiments [3, 4].

In this paper, we review our experimental results, provide details of the data extraction
procedure and offer a physical interpretation of heat conduction in graphene. Our theoretical
model allowed us to explain the higher values of thermal conductivity in suspended graphene
as compared to that of basal planes of bulk graphite. The rest of the paper is organized as
follows. Section 2 describes the method developed for measuring the thermal conductivity of
the suspended graphene. In section 3, we provide details of the measurements and calibration
procedure. Section 4 outlines the formal theory of the thermal conductivity. It is an accurate
approach but very challenging computationally. In order to treat the three-phonon Umklapp
processes exactly, we propose the scattering diagram method. In section 5, we offer a simple
model of the thermal conductivity of graphene. This model is less accurate but allows one to
clearly see the physical reasons behind higher thermal conductivity of graphene as compared to
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that of basal planes of bulk graphite. It also explains the inherent importance of the lateral size
effects on the thermal conductivity of graphene flakes.

2. Experimental investigation of heat conduction in graphene

Since none of the conventional methods for the thermal conductivity measurement works for
graphene, we developed our own non-contact optical approach. We took advantage of the
fact that graphene has distinctive signatures in Raman spectra with clear G peak and 2D
band [10]-[13]. Moreover, we also found that the G peak of graphene’s Raman spectra exhibits
strong temperature dependence [5, 6]. The latter means that the shift in the position of G peak in
response to laser heating can be used for measuring the local temperature rise. The correlation
between the temperature rise and amount of power dissipated in graphene, for the sample with
given geometry and proper heat sinks, can give the value of the thermal conductivity K (see
the schematic of the experiment in figure 1(a)). Even a small amount of power dissipated in
graphene can be sufficient for inducing a measurable shift in the G peak position due to the
extremely small thickness of the material—one atomic layer. The suspended portion of graphene
served several essential functions for (i) accurately determining the amount of power absorbed
by graphene through the calibration procedure, (ii) forming 2D in-plane heat front propagating
toward the heat sinks and (iii) reducing the thermal coupling to the substrate through the
increased micro and nanoscale corrugations (see figure 1(b)).

The first step in the measurements was determining the temperature coefficient x ; for the
G peak. To accomplish this task the laser excitation power was kept at a minimal level and
the temperature of the graphene flake was changed externally through the hot—cold cell [5, 6].
The results of our measurement of the temperature coefficients were verified by measuring the
coefficients for bulk graphite, which were in excellent agreement with the previously published
data for graphite [5, 6]. After the change in the temperature AT has been correlated with the
change in the Aw peak position, the micro-Raman spectrometer can be used as a thermometer.
During the measurement of the thermal conductivity, the excitation power is intentionally
increased to induce the local heating. The local temperature rise is determined through the
expression AT = Awg/ xc- It 1s important to mention here that the measurement technique
is steady state. Each data point in the thermal conductivity measurement, i.e. in recording the
G peak position as a function of the excitation power, takes sufficient time (several minutes)
for achieving the steady state. The energy deposited by the laser light to the electron gas in
graphene is transferred to phonons very fast. The time constant for the energy transfer from
the electrons to acoustic phonons in graphene is on the order of several picoseconds [14]-[16].
Thus, for the large graphene flakes utilized in our experiments (tens of microns) the changes in
the induced hot spot due to the finite thermalization time are small and can be neglected. From
the other side, our measurement time was small compared to the hours, that are required in order
to induce damage or surface modification in graphene by the laser light [17].

The long graphene flakes for these measurements were produced using the standard
technique of mechanical exfoliation of bulk Kish and highly oriented pyrolytic graphite
(HOPG) [1, 2]. The trenches were fabricated using the reactive ion etching. The width of
these trenches ranged from 1 to 5 um with the nominal depth of 300 nm. In the first set of
measurements, we selected graphene flakes of approximately rectangular shape connected to
large graphitic pieces, which acted as heat sinks. The rectangular shape was selected in order to
use a simple data extraction procedure based on the 1D heat diffusion equation. These graphitic
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Figure 1. (a) Schematic of the experimental setup with the excitation laser
light focused on graphene suspended across a trench in Si wafer. Laser
power absorbed in graphene induces a local hot spot and generates heat wave
propagating toward the heat sinks. (b) Illustration of the micro and nanoscale
corrugation formed in the suspended flake, which further reduce the thermal
coupling to the substrate. The depicted experimental technique allows one for
the steady-state non-contact direct measurement of the thermal conductivity.

pieces were at a distance of a few micrometers from the trench edges to ensure that the transport
is at least partially diffusive and the phonon mean free path (MFP) is not limited just by the
length of the flake. In the later measurements, we utilized well-defined massive metal heat
sinks and an elaborate procedure for the thermal conductivity extraction based on the numerical
solution of the heat diffusion equation. The single-layer graphene flakes were selected using
the micro Raman spectroscopy by checking the intensity ratio of G and 2D peaks and by
2D band deconvolution [10]-[13]. The combination of these two Raman techniques with the
atomic force microscopy (AFM) and scanning electron microscopy (SEM) allowed us to verify
the number of atomic planes and flake uniformity with a high degree of accuracy. The 2D
band deconvolution is currently considered to be the most robust, non-destructive and accurate
technique for counting the number of atomic layers in graphene. One should note here that the
thermal interface resistance between the flake and the heat sink is not such a big issue like in
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Figure 2. Illustration of the measurement and calibration procedure. (a)
Integrated Raman intensity is related to the power absorbed in graphene through
the scattering cross-section and absorption coefficient. (b) Detector is placed at
the sample location to measure the power at the surface. (c) Bulk graphite is
used as reference for the calibration procedure. The power absorbed in graphene
is determined through the ratio of the integrated Raman intensities of graphene
and bulk graphite.

the case of carbon nanotubes (CNTs). The graphene flake is naturally attached to the graphitic
piece and heat spreads over a large area.

The challenge in the measurement of the thermal conductivity with the described optical
technique is in accurate determining of the power absorbed in graphene. Only a fraction Pg
of the laser light focused on the graphene flake will actually be dissipated in the graphene.
Most of the light will be reflected back after the light travels through the flake to the trench
bottom and is reflected back (see figures 1(a) and (b)). The power, which is measured by the
detector placed at the position of the flake, is the total power Pp, part of which goes into the
graphene flake after two transmissions (incident pass and reflected pass) and the rest is lost in
the silicon wafer Ps;. It is now known that the fraction of the power absorbed by graphene is
2.3% per layer for light wavelength A > 500 nm. Our measurements were performed at a smaller
wavelength (A =488 nm) where the absorption is enhanced [18, 19]. The stronger absorption
at smaller wavelengths is explained by the effect of surface contaminations and bending of the
suspended part of graphene. The near-field effects in the gap between the suspended graphene
and trench bottom may also lead to additional absorption. Thus, it was important to determine
the absorbed power in the specific conditions of our experiment. The power Pg was measured
through the calibration procedure with the bulk graphite serving as a reference. The calibration
and measurement of the absorbed power is illustrated in figure 2. It is based on comparison
of the experimentally determined integrated Raman intensity for the G peak from the single-
layer graphene and bulk graphite. In the next section, we give the details of the derivation of
the calibration formula for the single-layer graphene. The measurements over the trenches with
different depths excluded interference effects [12]. No electrical bias was used at the back gate
or heat sinks to avoid the electrostatic effects on the G peak position. The RT position of the G
peak was verified for all samples.

3. Details of the measurements and data extraction technique

In this section, we provide details of the derivation of the formulae, which allow us to determine
the fraction of light power absorbed in graphene. The intensity of Raman scattering in graphene
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is given by
AIG:NO'GI(), (1)

where N is the number of scattering atoms on the illuminated surface of the cross-section A,
Iy is the laser intensity and og is the Raman scattering cross-section. Let us assume that an
electromagnetic (EM) wave with the intensity / = Iy is incident on a graphene layer. The
electric field of the wave transmitted through the graphene layer can be written as E; =
Eqexp[2m i(ng +ix)ag/) — iwt], where ny is the refractive index, « the extinction index and
ag the graphene thickness. Using the notations A; = 2wkag/A and Ay = 2mnoag/A, we can
rewrite the above equation as E| = Ejexp[—A;]exp[i(A, — wt)]. The power absorbed in the
graphene monolayer is given by the expression

Pe1=A(y— 1)) = A[{(ReEy)*), — ((ReE1)*),]
— (1/2)AEX(1 — expl—2A,]) ~ 24, Aly = agac Al @)

where the averaging is carried over the wave period T = 27 /w and ag = 4wk /1. The EM wave
incident on the surface of silicon under the suspended graphene is given as

E,=E, exp[—A]exp[i(A; — wt +2mz9/1)], 3)

where zp—is the distance from the graphene monolayer to the silicon surface (trench bottom),
which gives an extra yhase factor of exp[2m izo/A]. The reflected wave from silicon will have a
different amplitude E, and additional phase ¢ given as

E; = E,expli(A; — ot +2720/A + 9)]. )

By definition, the measurable macroscopic reflection coefficient is a ratio of the intensities of
the incident and reflected waves, i.e. Rs; = I5/1,. Here, we can write the following:

I, = (1/2)Ej exp[—2A,] = Iyexp[—2A,], Iy =(1/2)E% 5)

Thus, the reflection coefficient can be expressed as: Rg; = Er2 / Eg exp[—2A,], which gives the
relationship: Er2 = RSiEg exp[—2A,]. The amplitude of the reflected wave on the bottom side of
the suspended graphene monolayer is given as

Es = E;exp[—27izo/*] = E,expli(A; — ot +@)]. (6)

After transmitting through the graphene layer for the second time, i.e. from the bottom up, the
electrical field of EM wave will be written as

Es = Eqexpl—Ailexplida] = E, expli(24; — ot +¢)] exp[— A, ]. (7)
As a result, the power absorbed in the graphene monolayer is given by
Pgo = A(ly— I5) = A ((ReEy)’), — ((ReEs)*),)

= (1/2)AE}(1 — exp[—2A,]) = (1/2) AR Eg exp[—2A,](1 — exp[—2A,])
~2A1Rs;Aly = agagARs; 1. (8)
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In the above equations, we took into account that A; =2mkag/A < 1, which leads to
exp[—2A;]~ 1 and (1 —exp[—2A,]) = 2A,. The total power absorbed in graphene after EM
wave passes twice through it can be now written as

Pg = Pg 1+ Pg2 = acac(l + Rsi) [LA. 9
Expressing [ through Pg we have

P
Iy = S . (10)
O(Gac,(l + RSi)A

Plugging equation (10) to equation (1), we obtain the following equation for the integrated
intensity of Raman light reflected from graphene:

AIGZ EO'GL. (11)

A (XGag(l + RSi)

Let us now consider the light absorption and Raman scattering in bulk graphite. The highly
oriented crystalline graphite consists of atomic planes of graphene, which are bound by
the weak Van der Waals interaction. For light with energy above 0.5eV graphite behaves
essentially as a collection of independent graphene layers [20]. It is also confirmed by the
results of measurements of the light absorption in graphene multilayers, which proved that
for a wide range of wavelengths the absorption is constant per atomic layer [18, 19]. In our
analysis, we take into account that the absorption coefficient and Raman scattering cross-
section defined per layer are the same for graphene and for the single atomic plane in bulk
graphite. The electric field intensity created by the incident EM wave in nth atomic layer is
E(n) = Egexp[2mi(ng +ixg)nag/A —iwt], where ag is the distance between atomic planes
in bulk graphite. After the Raman scattering event the intensity in the scattered wave will
be given by ER = ER exp[2mi(ng +ikg)nag /1) exp[2mi(ng +ikg)nag /A — iwt +2mis,], where
8,(t) is the phase, Wthh appears after absorption or emission of a phonon. This phase is a
random function of time varying from photon to photon. Summing the electric field intensities
of the Raman scattered waves one can obtain the following:

mt Z E expl4ri(ng+ikg)nag /) —iwt] exp[2m 15,], and

(ReER)* = " (ED)? exp[—4mup(n+n')ag] cos(dmnonag /A — wt +2m8,) (12)

n,n’

x cos(dmnon’ag /) — wt +278,).

In order to average over the random phases we recall that the cosines’ values are between —1
and +1 with the average for the random variables being equal to zero for n # n’. Therefore, one
can write the following expression:

<(ReEmt > = " (ER) expl—8mkgnag] cos’ (4rnonag /A — wi +273,). (13)
Averaging over the whole time period, we obtain for the phase factor
2
(cos®(4mnonag /A +27 5, — wt)), = / cos>pdp =1/2. (14)
0

New Journal of Physics 11 (2009) 000000 (http://www.njp.org/)


http://www.njp.org/

8 I0P Institute of Physics () DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

As a result, for the intensity of the Raman scattered light from the stack of atomic planes, we
can write

ogly

1 o0
"= ~opE; -8 Al =
308Ed ) expl—Bmiunan 2] | — exp[—Smpas/A]

n=1

O'BI()

= ~ op/(2apag)lo = (08/(2agap))(Pp/A), (15)
1 —exp[—2agas]

where g = 4k /A. Based on the above expression, the integrated Raman scattering intensity

can be written as Alg = NIgr = Nlyog/(2agag). Taking into account that a part of the

incident power which is reflected from graphite and does not contribute to the Raman scattered

intensity, one obtains

Algux = (1/2)(N/A)(op/agag) Po(1 — Rg), (16)

where Ry is the graphite reflection coefficient.

Combining equations (11) and (16) and introducing the ratio ¢ :A_IG/ Algux, which
has to be determined experimentally, we obtain the final expression for the power
absorbed in graphene:

Pg = (¢/2)[opagag/ogasag](1 + Rsi) (1 — Rg) Pp. (17

The above expression allowed us to measure the heating power dissipated in the suspended
portion of graphene under the specific conditions of the experiment. The ratio ¢ = Alg/Algu,
measured for graphene and reference bulk graphite for the G peak and the same frequency
interval, stays nearly constant over the excitation power range used in the experiments.
The reflection coefficients for silicon and bulk graphite are tabulated quantities but can
also be measured directly while Pp is the actual reading of the power detector taken at the
position of the sample. Since the microscopic in-plane Raman cross-sections and absorption
coefficients are same for graphene and bulk graphite, the square bracket term in equation (17)
is close to one.

With equation (17) serving as the calibration law for converting Pp to Pg, the measurement
of the thermal conductivity of suspended graphene reduces to measuring the Raman shift
Awg as a function of the heating power Pp determined by the detector (see figure 3). The
measured slope Aw/A Pp, ratio of the integrated intensities ¢ and the temperature coefficient
Xxc give the value of the thermal conductivity of graphene. Initially, the thermal data extraction
was accomplished using the simple 1D model, and later improved by utilizing the numeric
solution of the heat diffusion equation for a given flake shape. It has been found that the
thermal conductivity for the single-layer partially suspended graphene is in the range from
~ 3000-5300 W mK ™' depending on the width (lateral size) of the graphene flakes. This value
is very high as compared to other carbon materials [21]-[26]. Table 1 summarizes the thermal
conductivities of graphene, CNTs and bulk graphite. One can see that there is a wide data scatter
for the reported values of the thermal conductivity of CNTs. The conventionally accepted values
for CNTs are K =~ 3000-3500 WmK™!. Thus, graphene can outperform CNTs as the heat
conductor. Owing to its planar geometry, graphene may have potential for lateral heat spreading.
It is still remains unclear as to how the thermal conductivity of graphene will be affected when
graphene layer is embedded inside the device structure or how the heat conduction ability will
evolve by increasing the number of atomic layers.
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Figure 3. Raman G peak position shift with respect to the change in the heating

power Pp on the sample surface. The heating power Pp is correlated with the
power dissipated in graphene Pg through the calibration procedure.

Table 1. Experimental thermal conductivity of graphene and CNTs near RT.

Sample K WmK™!)  Method Comments Reference
Graphene ~3080-5300 Optical Single layer Balandin et al [3, 4]
MW-CNT >3000 Electrical Individual Kim et al [21]
SW-CNT ~3500 Electrical Individual Pop et al [22]
SW-CNT 1750-5800  Thermocouples Bundles Hone et al [23]
SW-CNT 30007000 Thermocouples Individual Yu et al [24]
Graphite ~2000 Variety In-plane (basal) Klemens [25, 26]

4. Formal theory of the phonon heat conduction in graphene

In this section, we outline the formal theory of heat conduction in graphene. The heat flux along
a graphene atomic plane can be calculated according to the expression given in [27]. Multiplied
by the system volume the ‘total heat flux’ can be written as

W=> 6. Dhoy@NG o) =) (s, Dhor(@n(G. o). (18)
s,q s,q
where U(s, ¢)hw,(q) is the energy carried by one phonon, v(s, §) = dw,/dq is the phonon group
velocity and N (w, ¢) = No(w, ) +n(w, g) is the number of phonons in the flux. Here Ny is the
Bose—Einstein distribution function and n = —7,,(VVT)3dN,/dT is the non-equilibrium part of
the phonon distribution function N, where 7 is the total phonon relaxation time and 7 is the
absolute temperature.
Comparing the microscopic expression

W==2 (VT)5 ) tiuls. Pvp(s. §)

B 5.4

INo (@) .

a7 v §)hos(q) (19)
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with the macroscopic definition of the thermal conductivity
Wy = —kog(VT)ghL,L,, (20)
we obtain the following expression for the thermal conductivity tensor:

o °(“’ )hws@. @)

% = L Z Tt (55 9 Vu (5, g (5, §)
Here L, = d is the sample w1dth (graphene flake width), L, is the sample length and & = ag =
0.35 nm is the thickness of graphene. The diagonal element of the thermal conductivity tensor,
which corresponds to the phonon flux along the temperature gradient, is given by

O(ws)

D Tals, PUi(s, §) cos’ @ ho,(§). (22)

s,q9

KC{O{
hLLy

Finally, making a transition from the summation to the integration and taking into account
the 2D density of phonon states, we obtain the following expression for the scalar thermal
conductivity:

_ 1 = 0.9 explio, (g)/KT)
_4’T’<BT2th:/o H @@ ]T“’t(“’)[exp[hwsm)/kT]—1]2q da

The detailed description of the theoretical formalism for the phonon heat conduction in graphene
was recently reported by some of us elsewhere [7]. Our theoretical approach utilized an
original phase-diagram technique to account for all three-phonon Umklapp scattering channels
allowed by the energy and momentum conservation. We consider two types of the three-phonon
Umklapp scattering processes [27]—-[29]. The first type is the scattering when a phonon with the
wave vector ¢ (w) absorbs another phonon from the heat flux with the wave vector ¢’ ('), i.e.
the phonon leaves the state g. For this type of scattering processes, the momentum and energy
conservation laws are written as

C7+ZI/=Z)I'+5”,
24
w+o =, &9

where l;,-, i =1, 2, 3, is one of the vectors of reciprocal lattice (see figure 4(a)). The processes of
the second type are those that occur when the phonons ¢ of the heat flux decay into two phonons
with the wave vectors ¢’ and ¢” leaving the state ¢, or, alternatively, when two phonons ¢'(')
and ¢” (") merge together forming a phonon with the wave vector ¢ (), which correspond to
the phonon coming to the state ¢ (w). The conservation laws for this type are given by

G+bi=4 +3", i=4,5,6,

(25)

w=o+ao".
To find all the possible three-phonon processes, we used a fine mesh g; = (j —1)Aq (j =
1,..., 1001) with the step Ag = gmax/1000 ~ 0.015nm~". For each phonon mode (g;, 5), we
found all pairs of the phonon modes (g', s”) and (g”, s”) such that the conditions of equations (24)
and (25) are met. As a result, we constructed in (g’)-space the phase diagrams for all allowed
three-phonon transitions [7]. A sample phase diagram is depicted in figure 4(b) for different
(gi»s) and (¢, 5").
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Figure 4. (a) Schematic view of 2D BZs in graphene. (b) Three-phonon
scattering diagrams used for accounting of the LA and TA phonon Umklapp
scattering processes with the participation of the following phonons: (i) TA +
LA — TO, g =5.8nm™'; (ii) LA+ZA — LA, ¢ =5.8nm™!; (iii) TA+TA —
LA, g =58nm!; (iv) TA+TA — LA, g =4.4nm™"; (v) TA - ZA+ZO,
g =13.1nm™!; (vi) LA - TA+TA, ¢ = 10.1nm~! and (vii) LA — ZA +ZO,

g =10.1nm™".

Using the general expression for a matrix element of the three-phonon interaction [27]-[29]
and taking into account all relevant phonon branches and their dispersion as well as all unit
vectors of the reciprocal lattice b ...bg, directed from the I' point to the centers of the
neighboring unit cells (see figure 4(a)), we obtain the following for the Umklapp scattering
rates:

L@ [ [oo @@ {No[w;/ @)1 F Nol @)+~ F 1}
(s, q)  3mpvg(q) s 22
%810,(@) % ), (§) — /(G dg] dg’. 26)

Here g/ and ¢/, are the components of the vector ¢’ parallel or perpendicular to the lines defined
by equations (24) and (25), correspondingly, y;(¢) is the mode-dependent Gruneisen parameter,
which is determined for each phonon wave vector and polarization branch and p is the surface
mass density. In equation (26), the upper signs correspond to the processes of the first type,
whereas the lower signs correspond to those of the second type. The integrals for ¢;, g, are
taken along and are perpendicular to the curve segments, correspondingly, where the conditions
of equations (24) and (25) are met (see figure 4(b)). Integrating along ¢, we obtain the line
integral

1 . hy2(@)ws(q) Z / + (0], — ws)w),
D (s, §) 3mpv2(q) o vy ()

/ " 1 1 /

The integration in equation (27) is carried out along the curve segments /, as those shown
in figure 4(b). The integration in the expression for the scattering rate is a nontrivial task.
Previously, in the calculation of the thermal conductivity of conventional materials, it was done
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rather roughly with many simplifying assumptions. Most of the authors assumed that the phonon
with the wave vector g’ is on the surface of the BZ so that for any ¢, the following relation is
satisfied ¢ + g’ = b+ q". The frequency w(q’) in the equations similar to our equation is replaced
with w(q") = wr, where wr is the maximum value of the transverse acoustic phonons. Next, for
each g on the BZ surface, a circle with the radius r¢ was introduced within which (for a given ¢q)
the conditions of equations (24) and (25) are satisfied. In such an approach, the integration over
g' is reduced to multiplication by the circle area 7r2. In order to capture the specifics of heat
conduction in a 2D system such as graphene we avoided these simplifying assumptions, and
performed the integration in equation (27) accurately. The latter was made possible via the
scattering phase diagram technique developed by us.

As the first step, we found the points in BZ for which the condition w(q) + w(g") = w(q")
is satisfied. To do this, we fixed ¢ and numerically examined all pairs of ¢’ and g”, belonging
to BZ, and selected such points in 2D reciprocal space (', @.(¢")) and (§”, w!(q")) where
the conditions of equations (24) and (25) are valid for a given g. Such points form the curve
segments in the scattering diagrams (see figure 4(b)). These curves are nothing else but the lines
along which the integral in equation (27) is taken. This procedure was repeated for all phonon
polarization branches and all values of g. As a result, we found numerically, for all possible
g and for all polarization branches TA, LA, ZA, TO, LO, ZO, the lines in BZ along which
the conditions of equations (24) and (25) are valid. The integral in equation (27) was taken
numerically along these lines. The contributions from the separates lines (segments in the phase
diagrams shown in figure 4(b)) were summed to obtain the total Umklapp scattering rate. The
outlined procedure constitutes the essence of our diagram technique.

The combined scattering rate in both types of the three-phonon Umklapp processes for a
phonon in the state (s, ¢) can be calculated as

1 1 1
w63 W6 6D
uls, q Tuls, q u 8. q

One should note here that for the small phonon wave vectors (long wavelength), ¢ — 0, the
Umklapp-limited phonon life-time 7y — oo. For this reason, the calculation of the intrinsic
thermal conductivity with only Umklapp scattering is not possible without an arbitrary
truncation procedure. To avoid the unphysical assumptions about the limits of the integration, we
accurately include the phonon scattering on boundaries. In the case of graphene, the boundary
scattering term correspond to scattering from the rough edges of graphene flakes. No scattering
happens from the top and bottom sides of graphene flake since it is only one atomic layer thick
and the phonon flux is parallel to the graphene plane. We evaluate the rough edges’ scattering
using the Ziman equation [30]:

1 _Us(a)s)l_p
TB(s,q)_ L 1+p'

Here p is the specularity parameter, which depends on the roughness of the graphene edges and
L is the width of the graphene flake. The total phonon relaxation rate is given by

1 1 N 1
Toi(s,q) (s, q) (s, q)
It is important to emphasize that the thermal conductivity of the 2D system such as graphene

cannot be determined without the restriction on the phonon MFP in the long wavelength limit.
The phonon scattering on edges restricts the MFP in the formal theory of thermal conductivity.

(28)

(29)

(30)
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Figure 5. Calculated thermal conductivity of the suspended graphene as a
function of the specularity parameter p for the phonon scattering from the flake
edges. Note a strong dependence on the size of the graphene flakes.

In this sense the thermal conductivity limited by the Umklapp and boundary scattering can be
considered as an intrinsic property of a graphene flake of a particular size. The extrinsic effects,
which reduce the thermal conductivity, such as phonon scattering on defects, impurities and
grain boundaries are not included into the consideration. The RT intrinsic thermal conductivity
of graphene as a function of the specularity parameter is shown in figure 5. The specularity
parameter is defined by the edge roughness: p = 0 corresponds to the perfectly diffusive phonon
scattering from the edges while p = 1 corresponds to the perfectly specular scattering, which
does not contribute to the thermal resistance. The results were calculated for different sizes
(widths) of the graphene flakes. The experimental data point after Balandin ef al [3, 4] is also
shown for comparison.

5. Simple model of the phonon thermal conductivity of graphene

The calculation of the thermal conductivity within the formal theory outlined in the previous
section is an accurate but a rather complicated procedure. In this section, we describe a simpler
model of the thermal conductivity of graphene. This model originates from the Klemens’
approach to the thermal conductivity analysis of bulk graphite and graphene [25, 26]. We
substantially modified it by using a more general expression for the thermal conductivity,
introducing two Gruneisen parameters Y, obtained independently for each of the heat conducting
phonon polarization branches s, and keeping separate the velocities and cut-off frequencies
for each phonon branch. These changes allowed us to reflect the specifics of the phonon
dispersion in graphene. The effective parameters y, are computed by averaging the phonon-
mode-dependent y,(g) for all relevant phonons (here ¢ is the phonon wave vector). The
phonon branches, which carry heat, are longitudinal acoustic (LA) and transverse acoustic
(TA). The out-of-plane transverse acoustic phonons (ZA) do not make contributions to heat
conduction due to their low group velocity and high y,(q). There is a clear difference in the
heat transport in basal planes of bulk graphite and in single-layer graphene [25, 26]. In the
former, the heat transport is approximately 2D only till some low-bound cut-off frequency
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Figure 6. Phonon energy spectra in graphene calculated by using the VFF
method.

wc. Below wc there appears strong coupling with the cross-plane phonon modes and heat
starts to propagate in all directions, which reduces the contributions of these low-energy
modes to heat transport along basal planes to negligible values. In bulk graphite, there is a
physically reasonable reference point for the onset of the cross-plane coupling, which is the ZO’
phonon branch near ~4 THz observed in the spectrum of bulk graphite. The presence of ZO'
branch and corresponding wc¢ allows one to avoid the logarithmic divergence in the Umklapp-
limited thermal conductivity integral and calculate it without considering other scattering
mechanisms.

The physics of heat conduction is principally different in graphene where the phonon
transport is purely 2D all the way to zero-phonon frequency w(g = 0) = 0. There is no onset
of the cross-plane heat transport at the long-wavelength limit in the system, which consists
of only one atomic plane. There is no ZO' branch in the phonon dispersion of graphene (see
figure 6). Thus, the cut-off frequency for Umklapp processes cannot be introduced by analogy
with bulk graphite. Using an expression for the three-phonon Umklapp scattering from [25, 26]
but introducing separate lifetimes for LA and TA phonons, we have

K 1 M vs2 @y max
Tus = ) B 31
v ksT o

where s = TA or LA, vy is the average phonon velocity for a given branch, 7 is the absolute
temperature, kg is the Boltzmann constant, s ma.x 1s the maximum cut-off frequency for a
given branch and M is the mass of the unit cell. To determine y,, we averaged y;(q) obtained
from the accurate phonon dispersion calculated by using the VFF method [7] and the ab initio
theory [31]. Substituting T, = ‘L’é , in equation (23), one can obtain the following formula for
intrinsic thermal conductivity in graphene:

e dws(q) o explhawy(q)/kT]
e 4’”‘””’ ) {[ o ] f”“”[exp[hwxq)/m—112q}dq' .

TA LA Gmin

The above equation can be used to calculate the thermal conductivity with the actual dependence
of the phonon frequency w;(g) and the phonon velocity dw;(q)/dg on the phonon wavenumber.
To simplify the model, we can use the liner dispersion w,(g) = vyq and rewrite it as

@max explhw/kT)
Ku= 4nkBT2h Z/w {w 7 (@ exp[hw/kT]—uZ}dw' 33)

TA LA 'min
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Substituting equation (31) into equation (33) and performing integration we obtain

M a)smaxU~2
Ky = : AFa)sminaa)s'mx, 34
U 4ﬂThs:§LA R CH (34)

where

hw&max/kBT eXp(S)
F(ws,mim C!)s,max) = /

—d
hosmn/ ke L€XP(E) — 112 5

hws,max/kB T

(35)

§
= |In{ex -1+ — -

[ (exp®) — 1+ o s}
In the above equation, § = hw/kgT, and the upper cut-off frequencies w; max are defined from
the actual phonon dispersion in graphene, calculated by using the VFF model [7] and presented
in figure 6: WA max = 241 THZ, @A max = 180 THz. The low-bound cut-off frequencies @, min
for each s are determined from the condition that the phonon MFP cannot exceed the physical
size L of the flake, given as

Us | MUy g max
WDg min — — 2 . (36)
' v\ kgT L

The integrand in equation (35) can be further simplified near RT when %wg . > kg7, and it
can be expressed as

hws,min/ ks T

Ws min eXp(ha)s,min/kB T)
kBT CXp(hCl)s’min/kBT) — 1

The obtained equations (34) and (37) constitute a simple analytical model for calculation of the
thermal conductivity of the graphene layer, which retains such important features of graphene
phonon spectra as different vy and y, for LA and TA branches. The model also reflects the
2D nature of heat transport in graphene all the way down to zero-phonon frequency. Our
equation (31) reduces to Klemens’ formula for graphene [26] in the limit § — 0 (hw < kgT)
and additional assumption of the same y; and v, for LA and TA phonons.

Using equations (32) and (34)—(37) of the simple model we calculated the Umklapp-limited
intrinsic thermal conductivity of graphene as a function of temperature. The results are shown
in figure 7 for two different widths of graphene flakes. The Gruneisen parameters used in this
calculation, 1o = 1.8 and y1a = 0.75, were obtained by averaging of y,(g) [32]. The thermal
conductivity calculated with the exact w;(q) and the phonon velocity dw,(g)/dg (shown by
the dashed curves) is slightly smaller (by 5-10%) than those obtained with the simplified
equations (34)—(37) due to the decrease of dw;(¢q)/dq with increasing g. The difference between
thermal conductivities increases with increasing temperature as the condition fiw; max > kT
breaks down. One should note a very different temperature dependence obtained within this
model for the relatively small graphene flakes (10 um) as compared to that for large flakes
(100 um). In the very narrow graphene flakes and nanoribbons, the thermal conductivity
increases with temperature, which is related to the size (edge) effect on the phonon MFP.

In figure 8, we present the calculated RT thermal conductivity as a function of the flake
width. The dashed curves are obtained using equation (23) with the total relaxation rate
1/ti(s,q) =1/ téf J(w5(q)) +1/18(s, q), explicitly taking into account the phonon scattering on
graphene edges. The solid curve is obtained from the simplified approach (equations (31)—(37))

h
F(ws,min) ~ _ln{lexp(hws,min/kB T) - ll} + (37)
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Figure 7. Calculated thermal conductivity of graphene as a function of
temperature for two distinctively different flake sizes. An experimental data point
after Balandin et al [3, 4] is also shown for comparison.
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Figure 8. Calculated RT thermal conductivity of graphene as a function of the
lateral size for several values of the specularity parameter p. An experimental
data point after Balandin et al [3, 4] is also shown for comparison.

in which the edge scattering is not directly included. Instead, the phonon MFP is limited by the
physical size of the flake. The dashed curves are plotted for different values of the specularity
parameter p. Using both approaches we obtained similar dependences: the intrinsic thermal
conductivity of graphene grows with the increasing linear size of the graphene flake L. This
is a manifestation of the two-dimensional nature of the phonon transport in graphene. In real
experimental conductions, the thermal conductivity will also be limited by extrinsic factors
(defects, impurities, grain size, etc), which prevent the growth of the thermal conductivity
for very large flakes. With the decreasing specularity parameter p (more diffuse scattering),
the thermal conductivity calculated with the boundary scattering term approaches the result
obtained with the simple model. This is because in the simple model we neglect phonons with
frequency @ < wmin s by completely restricting the phonon MFP to the lateral sizes of the flake.
The latter corresponds to the perfectly diffusive scattering case (p = 0).
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The described models are in good agreement with the measurements and shed light on
the heat conduction properties of graphene. It also helps to understand the extremely large
range of the thermal conductivity values in carbon materials, which vary from some of the
lowest in amorphous carbon, nanocrystalline diamond and diamond-like carbon [33]-[36] to
the highest in graphene and CNTs (see table 1). The simple model can be readily incorporated
into the simulation software for the analysis of heat conduction in graphene layers and graphene
devices [37, 38]. The superior thermal conductivity of graphene is beneficial for all of its
proposed device applications, e.g. in low-noise transistors, sensors and interconnects [39, 40].
The application of graphene or few-layer graphene for lateral heat spreading would require
special heat sinks and graphene’s integration with suitable electrical insulators, e.g. synthetic
diamonds. The thermal conductivity of graphene embedded within SiO, layers can be reduced
due to the interface effects. It also decreases with the temperature due to stronger Umklapp
scattering at elevated temperature [41]. A recent study of energy dissipation in graphene
field-effect transistors [41] revealed the temperature dependence of the thermal conductivity
of graphene in line with our theoretical prediction [7]. One should note however that our
measurements were performed for partially suspended graphene with lateral heat sinks while
the study reported in [41] is for graphene on SiO, and heat sinks at the substrate bottom, which
lead to a different heat front and its dissipation through the oxide layer.

6. Conclusions

We reviewed the results of our experimental investigation of heat conduction in suspended
graphene and presented their detailed theoretical interpretation. We explain the enhanced
thermal conductivity of graphene as compared to that of bulk graphite basal planes by the 2D
nature of heat conduction in graphene over the whole range of phonon frequencies. The intrinsic
Umklapp-limited thermal conductivity of graphene grows with the increasing linear dimensions
of graphene flakes and can exceed that of bulk graphite when the flake size is on the order of few
micrometers. Superior thermal properties of graphene are beneficial for all proposed graphene
device applications.
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